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Abstract: We consider QCD factorization between hard and soft subprocesses in inclusive

reactions where the momentum fraction x of one parton approaches unity as the hard scale

Q2 → ∞, such that Q2(1 − x) is fixed. In this “BB limit” the entire (multi-parton)

Fock state containing the high x parton is coherent with the hard subprocess. The soft

contribution is given by a forward multiparton matrix element. The BB limit corresponds to

a fixed (large or small) missing mass and is thus closely connected to exclusive production.

We analyze the Drell-Yan process h + N → γ∗ +X in detail, explaining why the virtual

photon is longitudinally polarized for h = π and transversely polarized for h = p. The BB

limit may be relevant also for other phenomena observed at high x, such as the large single

spin asymmetries of pp→ Λ↑X and in pp↑ → πX.
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1. The BB limit

Data on hard inclusive processes has been successfully analyzed assuming QCD factoriza-

tion between a hard subprocess and universal soft matrix elements (parton distributions).

Formally one considers the leading contributions in the Bj limit where a hard scale Q2 → ∞
while the momentum fractions xi carried by the active partons (one in each hadron) are

held fixed. The higher twist corrections are power suppressed in the hard scale but gener-

ically increase as xi → 1. Thus the effective expansion parameter is 1/[Q2(1− xi)] (see [1]

for a recent phenomenological analysis of eN → eX (DIS)).

Data at high x has features which differ qualitatively from the leading twist contri-

bution. A striking example is the polarization of the virtual photon in πN → µ+µ−X

which changes from transverse to longitudinal when the photon carries a momentum frac-

tion xF & 0.6 of the pion beam [2]. This requires that at least one of the annihilating

quarks in the subprocess qq̄ → γ∗(Q2) goes off-shell by an amount commensurate with

the photon virtuality Q2. As pointed out by Berger and Brodsky [3] the longitudinally

polarized photon is coherent with both valence quarks in the pion. Hence the dominant

contribution is of higher twist even though the subprocess is hard. An analogous change

of J/ψ polarization at high xF was observed in πN → J/ψ +X [4]. The inapplicability of

the twist expansion in QCD at high x was discussed in [5].

In this paper we consider QCD factorization in a limit where x→ 1 as Q2 → ∞. Here

x can denote either the momentum fraction xi of a fast quark i or equivalently the xF of a

final state particle. The Drell-Yan data suggests that the helicity of the pion is transferred
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to the virtual photon at high x, implying that the photon is coherent with an entire Fock

state of the pion. The life-time of a Fock state is inversely proportional to ∆E, the energy

difference between the pion and the Fock state. At high pion momentum p,

2p∆E ≃ m2
π −

∑

i

p2
i⊥ +m2

i

xi
(1.1)

The x ≃ 1 quark which annihilates into the virtual photon contributes only little to the

energy difference (1.1). The life-time of the Fock state is determined by the stopped partons

with xi ∝ 1 − x. If 1 − x ∼ Λ2
QCD/Q

2 we get 2p∆E ∼ Q2 (we take pi⊥ ∼ ΛQCD, a generic

soft QCD scale). Such Fock states have life-times similar to that of the virtual photon,

ensuring their coherence with the hard process. This motivates us to consider the

BB limit : Q2 → ∞ at fixed Q2(1 − x) (1.2)

which recognizes [6] the early observations of Berger and Brodsky [3].

The understanding of QCD factorization in the BB limit is facilitated by an analogy

with ordinary DIS (ep → eX). In the rest frame of the target DIS may be viewed [7]

as proceeding through a splitting of the virtual photon into a quark pair, γ∗(Q2) → qq̄.

The quark carries nearly all of the photon energy ν and forms the current jet, whereas the

antiquark carries a finite momentum in the target rest frame, even as ν = Q2/2mpxB → ∞.

The qq̄ Fock state of the photon is analogous to the pion Fock state we just discussed: A

fast quark with momentum fraction xq ≃ 1 and an antiquark with xq̄ ∼ Λ2
QCD/Q

2. The

fact that the momentum xq̄ν of the antiquark remains finite in the Bj limit allows the

alternative (standard) interpretation of the antiquark as a quark constituent of the proton.

The DIS cross section can then be equivalently ascribed to the scattering of the qq̄ Fock

state on the target or to the probability of finding a quark in the target wave function. The

latter interpretation corresponds to the parton distributions obtained in QCD factorization.

In the following we shall analyze factorization of the Drell-Yan process in the BB limit,

interpreting stopped partons in Fock states of the beam as (anti-)parton constituents of the

target. We do not consider rescattering effects, i.e. , gauge links between the quark fields [8].

2. Kinematics of π+N → γ∗ + X at fixed (1 − xF)Q2

Our notation for the π+N → γ∗ + X kinematics is indicated in the Feynman diagram

of figure 1. The pion, nucleon and photon momenta are in Light-Front (LF) notation

(k = (k+, k−,k⊥) with k± = k0 ± k3)

Pion : k = (0, k−,0⊥)

Nucleon : p = (p+,m2
N/p

+,0⊥)

Photon : q = (Q2/q−, q−,q⊥) (2.1)

We neglect the mass of the pion as we take its momentum k− → ∞. We work in the

target rest frame, p+ = p− = mN , thus s = (k + p)2 ≃ mNk
− → ∞. In the BB limit

– 2 –
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Figure 1: Feynman diagram contributing to the Td(πN → γ∗X) amplitude. The arrows indicate

momentum directions; the yi are space-time positions of the vertices and A,B denote color indices.

The pion contributes via its ud̄ distribution amplitude φπ and the GPD denotes a transition (N →
X) Generalized Parton Distribution.

xF ≡ q−/k− → 1 at fixed q⊥, keeping also

xB ≡ q+

p+
=
Q2

s
fixed (2.2)

k− − q− ≡ xMp
− =

Q2(1 − xF )

q+
fixed

Since the four-momentum transfer k − q to the target system is fixed the invariant mass

MX of the hadronic state X is finite in the BB limit,

M2
X = (k + p− q)2 ≃ (1 − xB)[s(1 − xF ) +m2

N ] − q2
⊥ (2.3)

and may be small or large depending on the value of s(1−xF ) = Q2(1−xF )/xB . For X = N

we have the exclusive Drell-Yan process πN → γ∗N [10] as well as the time-reversed version

of γ∗N → π+N (Deeply Exclusive Meson Production) which are well-known to be described

by Generalized Parton Distributions [11] as indicated in figure 1. Factorization [12] applies

equally to the transition GPD’s (X 6= N) [13, 14] since MX ≪ Q. In section 3 we merely

sketch the derivation of the factorized amplitude.

In section 4 we consider the factorization of the inclusive Drell-Yan cross section

σ(π+N → µµX) through a completeness sum over the states X. As in the standard leading

twist limit of the Drell-Yan process, this includes integrating over the (small) transverse

momentum q⊥ of the virtual photon, which arises from the intrinsic momentum of the

partons in the GPD. High transverse momenta are suppressed at fixed MX since the GPD

is expected to fall off ∝ 1/q4
⊥, similarly to nucleon transition form factors. The integration

over q⊥ can be done at fixed MX by varying (k−q)− without affecting the hard subprocess

at leading order.

We anticipate that the pion will contribute through its distribution amplitude φπ(z)

and parametrize the momenta of its valence quarks as

k1 =
(

0, zk−,k⊥

)

k2 =
(

0, (1 − z)k−,−k⊥

)

(2.4)
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Figure 2: Feynman diagram contributing to Tu(π+N → γ∗X). Notations as in figure 1.

We take the transverse momenta to be limited, k2
⊥ ≪ Q2. Thus we neglect the perturbative

tail of the wave function which arises from gluon exchange and gives rise to the logarithmic

Q2 evolution of the distribution amplitude [9]. k+
1 and k+

2 vanish in the high energy limit

and do not contribute at leading order.

In the BB limit (1.2) one of the quarks in the pion (the u-quark in figure 1) transfers

nearly all its momentum to the other quark, such that the photon carries nearly all of the

pion momentum. The stopped u-quark is left with a finite momentum in the target rest

frame and should be connected to the target wave function as discussed above for DIS.

Consequently, as k− → ∞,

x = l+1 /p
+ fixed

xB + x = l+2 /p
+ fixed (2.5)

A large longitudinal momentum is transferred through the gluon (q1) and quark (q2) prop-

agators whose virtualities are of O
(

Q2
)

,

q21 ≃ −zk−l+1
q22 ≃ −k−l+1

}

∝ Q2 = xBs (2.6)

This implies that the hard interactions occur at nearly the same LF times (y+
1 , y

+
2 , y

+
3 =

O (1/k−)) and vanishing transverse separations (y1⊥, y2⊥, y3⊥ = O (1/Q)).

Since q21 and q22 are independent of l−i and li⊥ the soft target matrix element will

be integrated over these components (with the kinematic constraint l1 − l2 = k − q). In

evaluating the hard, perturbative subprocess it suffices to take

l1 = (xp+, 0−,0⊥)

l2 = ((x+ xB)p+, 0−,0⊥) (2.7)

and analogously only the minus components in (2.4) contribute. Thus both quarks effec-

tively reverse their direction of motion along the z-axis.
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3. Drell-Yan amplitude in the BB limit

The general expression for the scattering amplitude is

iT (π+N → γ∗λX)(2π)4δ4(k + p− q − p′)

= 〈γ∗λX|T
{

exp

[

−i
∫

dtHI(t)

]}

|πN〉 (3.1)

The expression for a diagram such as in figure 1 is obtained by expanding the hard ver-

tices of the interaction Hamiltonian HI , connecting them by perturbative propagators and

retaining the leading contribution in the BB limit (2.2). Equivalently, we may simply note

that due to the large momenta of O (k−) flowing from y1 → y2 → y3 the corresponding

LF time differences y+
2 − y+

1 and y+
3 − y+

2 are of O (1/k−). Similarly, the squared trans-

verse separations vanish as the inverse virtualities (2.6): |y2⊥ − y1⊥| and |y3⊥ − y2⊥| are

of O (1/Q). The diagram may then be evaluated using standard Feynman rules with the

prescription (A.14) (see appendix A) for the pion. The quarks l1 and l2 are treated as

external particles and their free wave functions are replaced according to

ū(l1) →
∫

dl+1
2π

dy−1
2

〈X(p′)|ψ̄u(y1) exp

(

− 1

2
iy−1 l

+
1

)

u(l2) → ψd(0)|N(p)〉 (3.2)

Our conventions for the wave functions and operators are explained in detail in appendix A.

Adding the diagram where the gluon vertex y2 in figure 1 is on the l2 line we find for the

amplitude where a photon of helicity λ = 0 is emitted from the d-quark,

Td(π
+N→γ∗LX)=ed

−ieg2 CF

Q
√

2Nc
(3.3)

×
∫

dz dl+1 φπ(z)

z 2π(l+1 −iε)

∫

dy−1 e
−iy−

1
l+
1

/2〈X(p′)|ψ̄u(y1)γ
+γ5 ψd(0)|N(p)〉y+

1
=y1⊥=0

where φπ(z) is the pion distribution amplitude. The amplitude for transversely polarized

photons is suppressed by a factor 1/Q. We give an intuitive explanation of this in section 5.

The contribution from the diagrams where the photon is emitted from the u-quark as

in figure 2 is obtained in a similar way. Defining

C(xB, x) ≡
∫ 1

0
dz φπ(z)

(

eu
1 − z

1

xB + x+ iε
+
ed
z

1

x− iε

)

(3.4)

the Drell-Yan amplitude for longitudinal photons is

T (π+N→γ∗LX)=Tu+Td =
−ieg2 CF

2πQ
√

2Nc

∫

dxC(xB , x) (3.5)

×
∫

dy−1 e
−iy−

1
l+
1

/2〈X(p′)|ψ̄u(y1)γ
+γ5 ψd(0)|N(p)〉y+

1
=y1⊥=0

where x and xB are defined in (2.5). For X = N we may verify that the amplitude indeed

corresponds to the usual expression for deeply exclusive pion production [12]. For general

states X the matrix element is a “transition” GPD [13, 14].

– 5 –



J
H
E
P
1
0
(
2
0
0
8
)
0
8
6

The full amplitude including the muon vertex is

T (πN → µ+µ−X) = T (πN → γ∗LX)
i

Q2
ū(q1, s)(−ie)/ε0(q)v(q2,−s′)

= T (πN → γ∗LX)
ie sin θ

Q
δss′ (3.6)

where θ is the polar angle of the muon momentum in the muon pair rest frame and s, s′

are the muon helicities.

4. The inclusive Drell-Yan cross section

The inclusive cross section is obtained by summing over all final states X,

σ(π+N → γ∗LX) =
1

2s

∑

X

∫

dq−d2q⊥

(2π)32q−
|T (π+N → γ∗LX)|2(2π)4δ4(k + p− q − p′) (4.1)

where
∑

X is defined by the completeness relation,

∑

X

|X〉〈X| ≡
∞
∑

n=0

∫ n
∏

i=1

d3pi

(2π)32Ei
|p1, . . . ,pn〉〈p1, . . . ,pn| = 1 (4.2)

and p′ =
∑

i pi is the total momentum of the state X.

The momentum conserving δ-functions in (4.1) constrain p′ and thus allow only a

subset of the states X in the completeness sum (4.2). The restriction on p′
⊥ is avoided by

summing over all transverse momenta q⊥ of the virtual photon. As mentioned in section

2, large values of q⊥ do not contribute significantly to the sum due to the suppression

provided by the GPD’s. On the other hand, p′+ and p′− are fixed by a measurement of

xB and xF . Hence we need to incorporate the corresponding δ-functions in the (hermitian

conjugate) matrix element:

〈N(p)|ψ̄d(0)γ
+γ5 ψu(y2)|X(p′)〉 2(2π)2δ(p+ − q+ − p′

+
)δ(k− + p− − q− − p′

−
)

=
1

2

∫

dy+
3 dy

−
3 〈N(p)|ψ̄d(y3)γ

+γ5 ψu(y2 + y3)|X(p′)〉 exp [iy3 · (k − q)] (4.3)

where y3⊥ = 0 and we used translation invariance in the matrix element. The full complete-

ness sum is allowed using the matrix element in (4.3), since states X which do not conserve

momentum will not contribute after the y3-integrations. The inclusive cross section (4.1)

will thus be given by the multiparton distribution shown in figure 3,

fdū/p(xB ,xM ;x,x′)= (4.4)

=
1

4(4π)3

∫

dy−1 dy
−
2 dy

−
3 dy

+
3 exp

{

1

2
i
[

−y−1 l+1 +y−2 l
+
1
′−y−3 q++y+

3 xMp
−
]

}

×〈N(p)|ψ̄d(y3)γ
+γ5 ψu(y2+y3) ψ̄u(y1)γ

+γ5 ψd(0)|N(p)〉yi⊥=0; y+

1
=y+

2
=0

where xB = q+/p+, x = l+1 /p
+, x′ = l′1

+/p+ and the scaled ‘−’ momentum transferred to

the inclusive system is denoted xM = k−(1 − xF )/p−. The inclusive mass MX is given by

xM as

M2
X = m2

N (1 − xB)(1 + xM ) − q2
⊥ (4.5)

– 6 –
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Figure 3: Pictorial representation of the forward multiparton distribution fdū/p(xB , xM ;x, x′)

given in eq. (4.4).

The kinematic range of xM in the BB limit is thus

xB + q2
⊥/m

2
N

1 − xB
≤ xM ≤ ∞ (4.6)

The shift by y3 introduced in (4.3) between the fields in the matrix elements of T

and in T † is conjugate to the momentum transfer k − q between the hard vertex and the

target. The MPD (4.4) differs from the higher twist distributions discussed by Jaffe [15]

through its dependence on the finite LF time difference y+
3 between the fields. Also the

standard leading twist PDF’s are evaluated at y+
3 = 0 since the inclusive system X carries

an asymptotically large ‘−’ momentum in the Bjorken limit.

In the BB limit the the momentum transfer xMp
− = k−(1 − xF ) = (l1 − l2)

− ∼ 1/y+
3

to the target is kept finite. We may, however, consider the case where this transfer is

nevertheless large compared to p−. Since the quark lines l1 and l2 connect to the non-

perturbative matrix element their virtualities l21, l
2
2 should remain limited, thus l+1 ∼

Λ2
QCD/l

−
1 and similarly for l+2 . Given that l+2 − l+1 = q+ = xBp

+ is fixed, either l−1 or −l−2
may be large, while the other has to be of O (p−). If l−1 is large then l+1 ≃ 0 and l+2 ≃ q+.

In this kinematics the u-quark will hadronize independently into a final state jet [3] and the

target MPD (4.4) should reduce to a d-quark PDF. We demonstrate this in appendix B.

Using the expression (3.5) of the scattering amplitude in the cross section (4.1) and

incorporating the longitudinal δ-function constraints in T † as in (4.3) the Drell-Yan cross

section in the BB limit can be expressed in terms of the double parton distribution (4.4) as

dσ(π+N→γ∗LX)

dM2
X

=
2(eg2CF )2

Q2s2(1−xB)Nc

∫

dxdx′C(xB , x)C
∗(xB , x

′)fdū/p(xB , xM ;x, x′) (4.7)

Including the muon pair observables as in (3.6) the differential cross section becomes

dσ(π+N → µµX)

dxB dΩµµ dM2
X

=
2 sin2 θ

(4π)3xB

dσ(π+N → γ∗LX)

dM2
X

(4.8)

5. Photon helicity for pion and proton induced Drell-Yan processes

The fact that the photon is coherent with an entire pion Fock state makes it natural that

it also carries the helicity (λ = 0) of the pion. On the other hand, this argument does

not suffice to determine the photon polarization in pN → γ∗X, since there is a minimal

– 7 –
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Figure 4: The double red arrows indicate the spin directions of the particles. All momenta are in

the ±z-direction as shown in the parentheses. The u-quark propagates into the GPD (not shown)

while the d-quark propagates out of it.

helicity flip |∆λ| = 1
2 for both transverse and longitudinal photons. The photon was found

to be transversely polarized in a calculation of the exclusive p̄N → γ∗π process [14]. As we

shall see, the same result is obtained for the proton induced inclusive Drell-Yan process in

the BB limit.

The helicity systematics follows in a straightforward way from three facts:

(i) The hard interactions conserve quark helicity up to corrections of O (mq/Q);

(ii) Since all transverse momenta q⊥ are limited, orbital contributions Lz ∼ O (q⊥/Q);

(iii) Angular momentum Jz ≃ Sz is conserved.

The helicities are then obtained by simple addition. In figure 4 the Jz components

are indicated by double arrows in the case x > 0 where the u-quark propagates (with

positive energy) into the GPD while the d-quark propagates out of it. They follow from

helicity conservation for the quark lines, taking into account the direction of longitudinal

momentum of the particles (indicated by ± for motion in the ±z direction). E.g., the

dominant spin component Sz = −1 of the gluon may be verified directly by expressing its

propagator as a sum over helicities as in (A.3). The quark propagators can analogously be

expanded in terms of the spinors (A.10).

The photon polarization in the case of a J = 1
2 beam particle, such as a nucleon, may

be similarly deduced. The analysis is especially simple if we model the nucleon as scalar

diquark-quark bound state. Setting Sz(u) = 0 in figure 4 gives Sz(g) = 0 and consequently

Sz(γ
∗) = 1.

We have calculated the relevant diagrams (figure 5) also for three-quark Fock states

of a nucleon (see [14] for a corresponding calculation of the exclusive p̄N → γ∗π process).

Ignoring flavor, the hard subprocess involves nine topologically different diagrams at tree

level. See figure 6 for momentum and helicity labels. We parametrize the momenta in

analogy to (2.4), (2.7) as

k1 =
(

0+, z1k
−,k1⊥

)

k2 =
(

0+, z2k
−,k2⊥

)

– 8 –
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Figure 5: Nine topologically different subprocess diagrams in pp̄→ γ∗(xF ) +X at large xF .

k3 =
(

0+, (1 − z1 − z2)k
−,−k1⊥ − k2⊥

)

ℓ1 =
(

x1p
+, 0−, ℓ1⊥

)

ℓ2 =
(

x2p
+, 0−, ℓ2⊥

)

ℓ3 =
(

−(xB + x1 + x2)p
+, 0−,−ℓ1⊥ − ℓ2⊥

)

q =
(

xBp
+, xF k

−,0⊥

)

(5.1)

where all transverse momenta (∼ ΛQCD) are negligible at leading order in 1/Q when

evaluating the hard subprocess.

We illustrate the method by calculating the diagram of figure 6 in the BB limit in

Feynman gauge. We suppress all color indices and use the light front spinors of (A.10) for

the proton valence quarks. Helicity conservation along the quark lines fixes t1,2,3 = s1,2,3,

leaving s1, s2, s3, and λ as parameters. We find that four helicity amplitudes Mλ
s1,s2,s3

receive contributions at leading order (Mλ
s1,s2,s3

∼ 1/Q3):

M+1
+,−,+ ≃ M+1

−,+,+ ≃ 4
√

2eqg
4
√

x2(x1 + x2 + xB)z2(1 − z1 − z2)

(p+k−)3/2√x1z1(x1 + x2)2(z1 + z2)2

≃ M−1
−,+,− ≃ M−1

+,−,− (5.2)

where the lower indices ± stand for ±1
2 and eq is the quark charge at the photon vertex. The

virtual photon is transverse in the leading amplitudes. This result can also be deduced by

using helicity and angular momentum conservation as explained above. The z-components

– 9 –
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Figure 6: Definitions of momenta (ki, ℓi) and helicities (si, ti) in diagram 1 of figure 5. The red

arrows indicate Sz in units of 1

2
~ when s1 = −s2 = s3 = 1

2
and the photon has helicity λ = 1. The

second gluon carries Sz = 0.

of spins are marked with red double arrows in figure 6 for the amplitude M+1
+,−,+. Notice

that the spin directions match with those of the scalar diquark model above.

We have checked by explicit calculation that the above reasoning applies similarly to

all the diagrams of figure 5. We find that the following helicity combinations are leading

(fixing λ = +1):

Diagram: Helicities:

1,4,8,9 (s1, s2, s3) = (+,−,+), (−,+,+)

5 (s1, s2, s3) = (−,+,+)

6 (s1, s2, s3) = (+,+,−)

7 (s1, s2, s3) = (+,−,+) (5.3)

Diagrams 2 and 3 do not contribute in Feynman gauge. Contributions with λ = −1

are obtained from (5.3) by flipping all quark helicities, and amplitudes with λ = 0 are

subleading as expected.

Interestingly, the (+,+,−) amplitude gets a contribution only from diagram 6 of fig-

ure 5. This can be understood in terms of helicity conservation since the rules (i)-(iii)

imply that for all other diagrams of figure 5 except diagram 6 either a gluon has |Sz| = 2

or a quark has |Sz| = 3/2. Note that diagram 6 is gauge invariant at leading order in 1/Q

since both gluons are transverse.

It is also straightforward to check that amplitudes where a pion (proton) projectile

produces a transverse (longitudinal) virtual photon are suppressed by orbital factors of

|ℓ1,2⊥|/Q or |k1,2⊥|/Q as expected from rule (ii) above. In the suppressed amplitudes the

projectile wave function is strongly weighted at the endpoints z = 0, 1. E.g., the pion

distribution amplitude is weighted by 1/z2 for z → 0 in the transverse photon amplitude,

instead of by 1/z as in (3.4). This endangers the convergence of the z-integral and is related

to the difficulty of proving factorization for γ∗TN → πN [12].

– 10 –



J
H
E
P
1
0
(
2
0
0
8
)
0
8
6

6. Discussion

The remarkable equality of the inclusive γ∗N → X DIS data at high Q2 with the exclusive

resonance contributions at lower Q2 [16] points to an intriguing relation between inclusive

and exclusive processes. This Bloom-Gilman duality indicates that two mathematical limits

simultaneously describe the data: Q2 → ∞ at fixed xB and at fixed hadronic (resonance)

mass W . The latter limit is equivalent to the BB limit of keeping Q2(1 − xB) fixed, some

aspects of which we have explored in this paper.

We focussed on the Drell-Yan process πN → γ∗X at fixed Q2(1 − xF ) for the virtual

photon. The xF → 1 limit forces a single quark to carry nearly all the pion momentum.

Knowing the “end-point” behaviour of the pion wave function is important in the analysis

of its exclusive form factor. The DY data [2] shows that the photon is longitudinally po-

larized at high xF , implying that the annihilating quark(s) are far off-shell. This dynamics

was studied by Berger and Brodsky [3], who showed that the hard subprocess is different

from the standard qq̄ → γ∗ one and, as in exclusive processes, is coherent with the entire

pion Fock state.

The theoretical and experimental evidence of the dominance of a hard subprocess which

is suppressed (i.e. , of higher twist) in the usual limit (Q2 → ∞ at fixed xF ) raised the

question whether one can define another limit where this subprocess would be a leading con-

tribution and could be factorized from the soft dynamics. As we discussed in section 1, the

requirement of coherence naturally selects the BB limit of fixed Q2(1−xF ). Since the mass

of the inclusive system X is fixed in this limit the existing factorization proofs for deeply ex-

clusive meson production γ∗N → πN [12] apply. The derivation is valid for any fixed mass

state X in πN → γ∗X, which builds the inclusive Drell-Yan process. The elastic process

πN → γ∗N was already considered in [10]. For X 6= N the soft dynamics involves “Tran-

sition Generalized Parton Distributions”, which have also been studied previously [13, 14].

We found that πN → γ∗X differs essentially from pN → γ∗X in the BB limit since

the photon is longitudinally polarized in πN and transversally in pN . Hence the transition

from the Bj to the BB limit can be directly observed in πN through the change of photon

polarization with increasing xF . In pN there is (as expected) no evidence for a change

of polarization from transverse to longitudinal, and the two limits may coexist in a range

of xF as suggested by duality [16]. This may be connected to the observation that the

azimuthal distribution of the muon pair in pN → µ+µ−X is consistent with the standard

QCD analysis [17] while this is not the case for πN → µ+µ−X [18].

The BB limit seems appropriate for understanding the large single spin asymmetries

(SSA) observed in hadron scattering at high xF and large transverse momenta [6]. The

SSA requires quark helicity flip and a dynamical phase, both of which are suppressed in

hard subprocesses. The coherence between partons of high and low x allows the helicity

flip and phase to occur in the soft part of the amplitude where they are not suppressed.

The multiparton distribution (4.4) that describes the soft dynamics of the Drell-Yan

process in the BB limit is a forward target matrix element with four quark fields, which

would be of higher twist in the usual Bj limit of fixed xF . It differs from the MPD’s

studied by Jaffe [15] in that the two pairs of quark fields originating from the amplitude

– 11 –
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and its complex conjugate are evaluated at a finite LF time difference y+
3 . This is a

consequence of the finite (in the target rest frame) ‘minus’ momentum (1 + xM )p− of the

inclusive system and means that the ordering of the quark fields in the matrix element is

significant. For xM → ∞ we demonstrated that the main contribution to the MPD is from

a contraction of a pair of quark fields, which reduces the MPD to a standard leading twist

parton distribution.
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A. The virtual photon and pion wave functions

We use LF polarization vectors [19] for the virtual photon with helicity λ,

ελ(q) = eλ − eλ · q
q+

n (A.1)

with

e±1 = − 1√
2
(0, 0,±1, i) n = (0, 2, 0, 0) (A.2)

e0(q) = − iq
√

q2
ñ = (2, 0, 0, 0)

which satisfy
∑

λ=±1,0

εµλ(k) ενλ(k)∗ = −gµν +
kµkν

k2
(A.3)

The pion valence state is defined by its wave function Ψk,

|π(k)〉 =
∑

s,A

(−1)s−
1

2√
2Nc

∫

d3k1 Ψk(k1)
√

4|k1||k2|(2π)3
b†s,A(k1)d

†
−s,A(k2)|0〉 (A.4)

where k2 = k − k1. The sum is over the helicity s = ±1
2 and color A (Nc = 3). With

{

bs,A(k1), b
†
s′,A′(k

′
1)

}

= (2π)32|k1|δ3(k1 − k′
1)δss′δAA′ (A.5)

this gives the normalization

〈π(k′)|π(k)〉 = (2π)32|k|δ3(k − k′)

∫

d3k1

(2π)32|k| |Ψk(k1)|2 (A.6)

Due to the large virtuality of the gluon propagator q1 in figure 1 only transversally compact

valence Fock states contribute at leading order, involving the pion distribution amplitude

φπ(z) ≡
∫

d2k1⊥

2(2π)3
Ψk(k1) (A.7)
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where k−1 = zk− as in (2.4). With fπ ≃ 93 MeV the normalization is
∫ 1

0
dz φπ(z) = − fπ

2
√
Nc

(A.8)

Since we took the pion to move along the −z direction in (2.1) we define the LF

spinors [19] in the quark operator

ψ(y) =

∫

d3p

2|p|(2π)3

∑

s

[

bs(p)us(p)e−ip·y + d†s(p)vs(p)eip·y
]

(A.9)

to be well-defined for k+ = 0,

u(p, s) =
1

√

p−
/p χ(s)

v(p, s) =
1

√

p−
/p χ(−s) (A.10)

where χ(1
2 ) = (1, 0, 1, 0)T /

√
2 and χ(−1

2) = (0, 1, 0,−1)T /
√

2.

At lowest order the Bethe-Salpeter wave function of the pion is

Φαβ
k

(y1, y2)≡ 〈0|ψ̄B
β (y2)ψ

A
α (y1)|π(k)〉 (A.11)

=
δAB√
2Nc

∑

s

(−1)s−
1

2

∫

d3k1 Ψk(k1)
√

4|k1||k2|(2π)3
v̄β(k2,−s)uα(k1, s) exp(−ik1 ·y1−ik2 ·y2)

For the LF spinors defined in (A.10),

∑

s

(−1)s−
1

2 v̄β(k2,−s)uα(k1, s) =
1

√

k−1 k
−
2

∑

s

(−1)s−
1

2 (/k1)αα′χα′(s)(γ0χ)
†
β′(s)(/k2)β′β

=
−1

2
√

k−1 k
−
2

[/k1 /̃nγ5/k2]αβ ≃ 1

2

√

k−1 k
−
2 [/nγ5]αβ (A.12)

where the last equality applies in the limit k− → ∞, using /ki ≃ 1
2k

−
i /n. Thus

Φαβ
k−→∞

(y1, y2)=
δAB

2
√

2Nc
[/nγ5]αβ k

−

∫

dz d2k⊥1

16π3
Ψk

(

kz
1 =−1

2
zk−,k⊥1

)

exp(−ik1 ·y1−ik2·y2)

(A.13)

With k+
1 = k+

2 = 0 as in (2.4) the BS wave function Φαβ
k−→∞

(y1, y2) is independent of y−1 , y
−
2 .

Thus the wave function is the same whether evaluated at y−1 = y−2 (the LF wave function

for a particle moving in the −z direction) or at equal ordinary time, y−1 − y−2 = y+
2 − y+

1 .

This expresses the well-known fact that equal time wave functions are the same as LF wave

functions in the infinite momentum frame.

In the BB limit we have yi⊥ = 0 (i = 1, 2), hence the pion enters through its distribution

amplitude (A.7). In analogy to (3.2) we can write an effective Feynman rule for the pion

uβ(k1)v̄α(k2) →
∫

dk−1
2π

dy+
1

2
exp

(

1

2
ik−1 y

+
1

)

〈0|ψ̄B
β (0)ψA

α (y1)|π(k)〉y−

1
=y1⊥=0 (A.14)

=

∫

dk−1
2π

dy+
1

2
Φαβ

k
(y+

1 , 0) exp

(

1

2
ik−1 y

+
1

)

≃
k
−

→∞

δAB

2
√

2Nc
[/nγ5]αβ k

−

∫

dz φπ(z)

which will be multiplied by k−1 = zk−-dependent propagators, cf. (2.6).
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B. The limit of large xMp− = k−(1 − xF)

In the BB limit of the DY process π+N → γ∗X the virtual photon carries nearly all

(xF → 1) of the pion momentum, leaving a finite (in the target rest frame) transfer

xMp
− = k−(1 − xF ) to the target system. In this appendix we consider the case xM ≫ 1,

when the momentum transfer (l1 − l2)
− is large compared to p−. Since the quark lines

l1, l2 attach to the non-perturbative GPD their virtualities l2i = l+i l
−
i − l2i⊥ should remain of

O
(

Λ2
QCD

)

. Given that (l2 − l1)+ = xBp
+ is fixed either l−1 or −l−2 , but not both, can grow

large. When l−1 is large the u(l1)-quark hadronizes independently of the target remnants,

similarly to the struck quark in the standard Bjorken limit of the DY process. Here we

show that the target MPD in the expression (4.7) of the DY cross section reduces to the

d-quark PDF as xMp
− ≃ l−1 → ∞, and to the ū-quark PDF as xMp

− ≃ −l−2 → ∞.

(i) fdū/p → fd/p as xM → ∞ with xMp
− ≃ l−1

According to the expression (4.4) of the MPD the LF time difference between the

quark fields y+
3 ∼ 1/xMp− → 0 as xM → ∞. The dynamics then becomes light-

cone dominated and contractions of the u- or d-quark fields in the MPD dominate.

A contraction turns the MPD into a standard PDF in which the field ordering is

irrelevant, i.e. , only one contraction is possible.

The contribution where the u-quark has large momentum and is treated as a free

final state particle (l−1 → ∞, l+1 ∼ Λ2
QCD/l

−
1 ) corresponds to contracting the u-fields

in fdū/p of (4.4). Using

〈0|ψ(x)ψ̄(0)|0〉=
∫

d3l

(2π)32|l|e
−il·x/l

∣

∣

∣

∣

l0=|l|

=

∫

dl+ d2l⊥

(2π)32l+
θ(l+) e−il·x/l

∣

∣

∣

∣

l−=l2
⊥

/l+
(B.1)

we have

fdū/p =
1

4(4π)3

∫

dy−1 dy
−
2 dy

−
3 dy

+
3 exp

{

1

2
i
[

−y−1 l+1 + y−2 l
+
1
′ − y−3 q

+ + y+
3 xMp

−
]

}

×
∫

dl+ d2l⊥

(2π)32l+
θ(l+) 2l+〈N(p)|ψ̄d(y3)γ

+ ψd(0)|N(p)〉

× exp

[

−1

2
il+(y−2 + y−3 − y−1 ) − 1

2
i
l2⊥
l+
y+
3

]

(B.2)

Integrating over the transverse momenta,

∫

d2l⊥ exp

[

−i l
2
⊥

2l+
y+
3

]

= − 2πil+

y+
3 − iε

(B.3)

Given the small effective range of y+
3 ∼ 1/(k−(1 − xF )) we may neglect the y+

3 -

dependence of the matrix element in (B.2) (which is regular on the light-cone). We get

∫

dy+
3

exp[12 iy
+
3 k

−(1 − xF )]

y+
3 − iε

= 2πi (B.4)
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The integrals over y−1 and y−2 give δ-functions constraining l+1 = l′1
+ and l+ = l+1 .

Noting that l+2 = q+ + l+1 we have

fdū/p = δ(l+1 − l′1
+
)
l+1
4π

θ(l+1 )fd/p(l
+
2 /p

+) (B.5)

where the d-quark PDF is

fd/p(l
+
2 /p

+) =
1

8π

∫

dy−3 exp

(

−1

2
iy−3 l

+
2

)

〈N(p)|ψ̄d(y
−
3 )γ+ ψd(0)|N(p)〉 (B.6)

The dominant contribution to the cross section (4.7) comes from the region of low

l+1 = xp+ due to |C(xB , x)|2 ∝ 1/x2 (the other singularity at x = −xB is outside the

kinematic region since l+1 > 0). This is consistent with l+1 ∝ 1/l−1 → 0 at large l−1 ,

which ensures that the independently hadronizing u-quark is nearly on-shell. Thus

C(xB, x) ≃
ed
x

∫

dz

z
φπ(z) (B.7)

Using this and the expression (B.5) for the MPD in the cross section (4.7) we get

dσ(π+N → γ∗LX)

dM2
X

=
(eedg

2CF )2

Q2s2(1−xB)Nc

∫

dl+1
2πl+1

θ(l+1 )

(
∫

dz

z
φπ(z)

)2

fd/p(l
+
2 /p

+) (B.8)

(ii) Comparison with standard factorization

We should compare the cross section (B.8) with a calculation [3] where σ(π+ +N →
u+ γ∗L(q) +X) is expressed in terms of the hard subprocess cross section σ̂(π+(k) +

d(l2) → u(l1) + γ∗L(q)) convoluted with fd/p(l
+
2 /p

+). Parametrizing the momenta as

l1 = (l+1 , l
−
1 , l⊥)

q = (q+, q−,−l⊥) (B.9)

l2 = (l+2 , 0
−,0⊥)

we have l−1 ≃ xMp
−, l+1 = l+2 − q+, l2⊥ = l+1 l

−
1 and Q2 ≃ q+q−. The subprocess

amplitude is in the BB limit

T̂ (π+d→ u+ γ∗L) = ∓4ieedg
2CF

Q
√

2Nc

√

l+2
l+1

∫

dz

z
φπ(z) (B.10)

where the signs correspond to the helicity ±1
2 of the u-quark. The subprocess cross

section

σ̂(π+d→ u+ γ∗L) =
1

16πŝ

∫

dl+1 θ(l
+
1 ) dq−dl2⊥δ(l

+
1 l

−
1 − l2⊥) δ(q+q− −Q2)| T̂ |2

=
(eedg

2CF )2

Q4Nc

∫

dl+1
2πl+1

θ(l+1 )

(
∫

dz

z
φπ(z)

)2

(B.11)
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gives the full cross section

σ(π+N → u+ γ∗L +X) =

∫

dl+2
p+

σ̂(π+d→ u+ γ∗L) fd/p

(

l+2
p+

)

(B.12)

Using dl+2 = dq+ = dM2
X Q2/[sk−(1 − xB)] this expression agrees with (B.8) derived

from the MPD.

(iii) fdū/p → fū/p as xM → ∞ with xMp
− ≃ −l−2

Finally, we consider the contraction of the d-quark fields in the MPD, which corre-

sponds to π+N → d̄+ γ∗L +X. Similarly to (B.1) we have

〈0|ψ̄α
d (y3)ψ

β
d (0)|0〉 =

∫

dl+ d2l⊥

(2π)32l+
θ(l+) e−il·y3/l

βα
∣

∣

∣

∣

l−=l2
⊥

/l+
(B.13)

After the integrals over d2l⊥ and dy+
3 and defining y− = y−1 − y−2 − y−3 we get (with

a minus sign from reordering the fermion fields)

fdū/p=− 1

4(4π)3

∫

dy−1 dy
−
2 dy

−

∫

dl+

2π
l+θ(l+) 〈N(p)|ψ̄u(y−)γ+ ψu(0)|N(p)〉 (B.14)

×exp

[

− i

4
(y−1 −y−2 )(l+1 +l′1

+
)− i

4
(y−1 +y−2 )(l+1 −l′1

+
)− i

2
(y−1 −y−2 −y−)(q++l+)

]

The integrals over y−1 , y
−
2 set l+1 = l′1

+ and l+ = −l+1 − q+ = −l+2 , giving

fdū/p = δ(l+1 − l′1
+
)
−l+2
4π

θ(−l+2 )fū(p(−l+1 /p+) (B.15)

where the antiquark PDF is

fū/p(−l+1 /p+) = − 1

8π

∫

dy− exp(−1

2
iy−l+1 )〈N(p)|ψ̄u(y−)γ+ ψu(0)|N(p)〉 (B.16)

Now the dominant contribution of C(xB, x) in the cross section comes from its pole

at l+2 = 0, giving σ ∝ e2u as expected.
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